
Divide and Conquer
Lecture 13

by Marina Barsky

https://www.khanacademy.org/computing/computer-
science/algorithms/sorting-algorithms/a/sorting

https://www.khanacademy.org/computing/computer-science/algorithms/sorting-algorithms/a/sorting

Warmup: Recursive array max

• Design a recursive algorithm called findArrayMax that returns the maximum
value in an array

• Formally:

Input: array A of length n >= 1

Output: max value of A

• Examples: Input: A = {4, 13, 21, 5, 2})

Output: 21

Input: A ={-1, -3, -8, -5, -12}

Output: -1

Input: A = {5}

Output: 5

Algorithm findArrayMax(A):

input: a NONEMPTY array, A

output: A's maximum element

Recursive array max: stop condition

Stop condition?

if A.length == 1
return 1

if A.length == 1
return 0

if A.length == 1
return A[0]

A

B

C

• A

• B

• C

• None of the above

• More than one is
correct

Recursive array max: recursive step

if A[0] < A[1]:
A = A - A[0]
return findArrayMax(A)

else:
A = A - A[1]
return findArrayMax(A)

A
*

B
*

• A

• B

• None of the above

Algorithm findArrayMax(A):

if A.length == 1:

return A[0]

*

if A[0] < A[1]:
A = A - A[1]
return findArrayMax(A)

else:
A = A - A[0]
return findArrayMax(A)

Algorithm findArrayMax(A):

input: a NONEMPTY array, A

output: A's maximum element

if A.length == 1:

return A[0]

if A[0]<A[1]:

A = A - A[0]

return findArrayMax(A)

else:

A = A - A[1]

return findArrayMax(A)

Recursive array max: solution

Sorting Problem

Input: Sequence A of n elements
Output: Permutation A’ of elements in A

such that all elements of A’
are in non-decreasing order.

Sorting Problem

https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

https://www.toptal.com/developers/sorting-algorithms

https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
https://www.toptal.com/developers/sorting-algorithms

Why Sorting?

• Sorting data is an important step of many efficient

algorithms

• Sorted data allows for more efficient queries

(binary search)

1. Break into non-overlapping subproblems
of the same type

2. Solve subproblems

3. Combine results

We will use
Divide-and-conquer technique

Divide: break apart

Conquer: solve subproblems

✓

✓

✓ ✓

Combine

✓

✓ ✓

✓

✓

Idea: merge sort

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

split the array into two halves

Idea: merge sort

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

sort the halves recursively

2 3 5 7 1 6 7 13

split the array into two halves

merge the sorted halves into one array

Idea: merge sort

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

2 3 5 7 1 6 7 13

1 2 3 5 6 7 7 13

split the array into two halves

sort the halves recursively

Algorithm MergeSort (array A[1...n])

if n = 1: return A # already sorted

m ← ⌊n/2⌋

B ← MergeSort(A[1 ... m])

C ← MergeSort(A[m + 1 ... n])

A′ ← merge(B, C)

return A′

Merging Two Sorted Arrays

Algorithm Merge(B[1... p], C [1... q])

B and C are sorted
D ← empty array of size p + q
while B and C are both non-empty:

b ← the first element of B
c ← the first element of C
if b ≤ c:

move b from B to the end of D
else:

move c from C to the end of D
move what remains of B or C to the end of D
return D

Merge sort: example

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

Merge sort: example

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

Merge sort: example

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

Merge sort: example

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

2 7 3 5 7 13 1 6

Merge sort: example

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

2 7 3 5 7 13 1 6

2 3 5 7 1 6 7 13

Merge sort: example

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

2 7 3 5 7 13 1 6

2 3 5 7 1 6 7 13

1 2 3 5 6 7 7 13

Merge: example

2 3 5 7 1 6 7 13
i j

B C

D

Compare B[i] and C[j]

k

Merge: example

2 3 5 7 1 6 7 13

1

i j

B C

D

Compare B[i] and C[j]

k

Merge: example

2 3 5 7 1 6 7 13

1 2

i
j

B C

D

Compare B[i] and C[j]

k

Merge: example

2 3 5 7 1 6 7 13

1 2 3

i j

B C

D

Compare B[i] and C[j]

k

Merge: example

2 3 5 7 1 6 7 13

1 2 3 5

i j

B C

D

Compare B[i] and C[j]

k

Merge: example

2 3 5 7 1 6 7 13

1 2 3 5 6

i j

B C

D

Compare B[i] and C[j]

k

Merge: example

2 3 5 7 1 6 7 13

1 2 3 5 6 7

j

B C

D

Copy what remains in C

k

Merge: example

2 3 5 7 1 6 7 13

1 2 3 5 6 7 7 13

B C

D

n

n/2 n/2

n/4 n/4 n/4 n/4

· · ·

1

Merge sort: running time

Subproblem
size at each
level

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

n

n/2 n/2

n/4 n/4 n/4 n/4

· · ·

1

Merge sort: recursion tree
The height
of the tree
is...

n

n/2 n/2

n/4 n/4 n/4 n/4

· · ·

1

Merge sort: recursion tree
The height
of the tree
is log n

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

n

n/2 n/2

n/4 n/4 n/4 n/4

· · ·

1

Merge sort: recursion tree
Work at each level: all the work during merge

c*n

2 * cn/2

4*cn/4

8*cn/8

n*c

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

n

n/2 n/2

n/4 n/4 n/4 n/4

· · ·

1

Merge sort: recursion tree
Work at each level: O(n)

O(n)

O(n)

O(n)

O(n)

O(n)

Total: O(n)*log n = O(n log n)

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

We can prove that this running time is optimal
if we consider sorting based on comparing
pairs of numbers

Merge Sort: running time
The running time of MergeSort(A[1 . . . n]) is

O(n log n).

We can not do (asymptotically) faster.
Can we do better in practice?

Idea: Quicksort

❏ Divide array A into 2 subarrays

❏ Recursively fully sort each subarray

❏ Combine the sorted subarrays by a simple
concatenation

Quicksort

Select an element
called pivot

1. Divide elements into 2
groups L (less or
equal), and G (greater
than pivot)

2. Conquer: recursively
sort L and G

3. Combine: concatenate
L→E→R

Example: quick sort

6 4 8 2 9 3 9 4 7 6 1

Example: quick sort

6 4 8 2 9 3 9 4 7 6 1

Rearrange elements with respect to
x = A[0]

≤ 6 > 6

1 4 2 3 4 6 6 9 7 8 9

Example: quick sort

6 4 8 2 9 3 9 4 7 6 1

6 is in its final position

sort the two parts recursively

1 4 2 3 4 6 6 9 7 8 9

1 2 3 4 4 6 6 7 8 9 9

QuickSort(A, ℓ, r)

if ℓ ≥ r :

return

m ← Partition(A, ℓ, r)
A[m] is in the final position

QuickSort(A, ℓ, m − 1)

QuickSort(A, m + 1, r)

❏ the pivot is x = A[ℓ]

❏ loop i from ℓ+1 to r maintaining the
following invariant:
❏ A[k] ≤ x for all ℓ + 1 ≤ k ≤ j
❏ A[k] > x for all j + 1 ≤ k ≤ i

Partitioning: example

6 4 2 3 9 8 9 4 7 6 1

ℓ r

j i

❏ the pivot is x = A[ℓ]

❏ move i from ℓ+1 to r maintaining the

following invariant:

❏ A[k] ≤ x for all ℓ + 1 ≤ k ≤ j
❏ A[k] > x for all j + 1 ≤ k ≤ i

❏ if encounter an out-of-order element:
swap A[i] with A[j+1]

Partitioning: example

ℓ r

j

6 4 2 3 9 8 9 4 7 6 1

i

❏ the pivot is x = A[ℓ]

❏ move i from ℓ+1 to r maintaining the

following invariant:

❏ A[k] ≤ x for all ℓ + 1 ≤ k ≤ j
❏ A[k] > x for all j + 1 ≤ k ≤ i

❏ if encounter an out-of-order element:
swap A[i] with A[j+1]

Partitioning: example

ℓ r

j

6 4 2 3 4 8 9 9 7 6 1

i

❏ the pivot is x = A[ℓ]

❏ move i from ℓ+1 to r maintaining the

following invariant:

❏ A[k] ≤ x for all ℓ + 1 ≤ k ≤ j
❏ A[k] > x for all j + 1 ≤ k ≤ i

❏ if encounter an out-of-order element:
swap A[i] with A[j+1]

Partitioning: example

ℓ r

j

6 4 2 3 4 8 9 9 7 6 1

i

❏ the pivot is x = A[ℓ]

❏ move i from ℓ+1 to r maintaining the

following invariant:

❏ A[k] ≤ x for all ℓ + 1 ≤ k ≤ j
❏ A[k] > x for all j + 1 ≤ k ≤ i

❏ if encounter an out-of-order element:
swap A[i] with A[j+1]

Partitioning: example

ℓ r

j

6 4 2 3 4 6 9 9 7 8 1

i

❏ the pivot is x = A[ℓ]

❏ move i from ℓ+1 to r maintaining the

following invariant:

❏ A[k] ≤ x for all ℓ + 1 ≤ k ≤ j
❏ A[k] > x for all j + 1 ≤ k ≤ i

❏ if encounter an out-of-order element:
swap A[i] with A[j+1]

Partitioning: example

ℓ r

j

6 4 2 3 4 6 9 9 7 8 1

i

❏ the pivot is x = A[ℓ]

❏ move i from ℓ+1 to r maintaining the

following invariant:

❏ A[k] ≤ x for all ℓ + 1 ≤ k ≤ j
❏ A[k] > x for all j + 1 ≤ k ≤ i

❏ if encounter an out-of-order element:
swap A[i] with A[j+1]

Partitioning: example

ℓ r

j

6 4 2 3 4 6 1 9 7 8 9

i

❏ the pivot is x = A[ℓ]

❏ move i from ℓ+1 to r maintaining the

following invariant:

❏ A[k] ≤ x for all ℓ + 1 ≤ k ≤ j
❏ A[k] > x for all j + 1 ≤ k ≤ i

❏ in the end, move A[ℓ] to its final place j

Partitioning: example

ℓ r

j

6 4 2 3 4 6 1 9 7 8 9

i

❏ the pivot is x = A[ℓ]

❏ move i from ℓ+1 to r maintaining the

following invariant:

❏ A[k] ≤ x for all ℓ + 1 ≤ k ≤ j
❏ A[k] > x for all j + 1 ≤ k ≤ i

❏ in the end, move A[ℓ] to its final place j

Partitioning: example

ℓ r

j

1 4 2 3 4 6 6 9 7 8 9

i

Algorithm Partition(A, ℓ, r)

x ← A[ℓ] # pivot

j ← ℓ
for i from ℓ + 1 to r :

if A[i] ≤ x :

j ← j + 1

swap A[j] and A[i]

swap A[ℓ] and A[j]

return j

A[ℓ + 1 . . . j] ≤ x , A[j + 1 . . . i] > x

Running time of Quick Sort

T (n) = 2T (n/2) + n

If we happen to choose the pivot x in such a way
that after the partitioning the array A is split into
even halves:

This is the same as in
Merge sort, only here n
comes from partitioning,
and in merge sort n
comes from combine
(merge)

The running time of Quicksort is O(n log n)

Quick Sort: summary

❏ Simple

❏ Comparison-based

❏ Very fast in practice

Which choice of pivot would yield
an optimal partitioning of A?

A. 7

B. 6

C. 5

D. 1

E. None of the above

7 2 5 3 7 13 1 6 3A

Which choice of pivot would yield
the worst partitioning of A?

A. 7

B. 6

C. 5

D. 1

E. None of the above

7 2 5 3 7 13 1 6 3A

Unlucky choice of pivot

If we choose a pivot in such a way that all values
are greater than it, then in each recursive step we
decrement a size of the problem only by 1:

1 4 2 3 4 6 5 9 7 8 9

1 4 2 3 4 6 5 9 7 8 9

T(n) = O(n) + T(n-1)

Quick Sort: worst case complexity

..

Work at each level

n

n − 1

n

n

nn − 2

2 n

n

Total: n*n = O(n2
)

1

Input size at each level T(n) = n + T(n-1)

Quick Sort: worst case complexity

..

Work at each level

n

n − 1

n

n

nn − 2

2 n

n

Total: n*n = O(n2
)

1

Input size at each level T(n) = n + T(n-1)

Pathological case

T (n) = O(n2
)

1 2 4 5 6 6 8 9 9 9 9

It requires O(n2) time to process the already sorted array
which seems very inefficient since the array is already sorted!

❏ We can show that if we choose x randomly there is at
least 50% chance that a good pivot will be chosen!

We can prove this using the expectation and the
probabilities of random events

❏If we choose all pivots at random, then half the times we
do decrease the input sizes by a factor

❏This implies that the height of the recursive tree will be
(2 log n) and the running time becomes O(n log n)

Choosing random pivot

RandomizedQuickSort(A, ℓ, r)

if ℓ ≥ r :

return

k ← random number between ℓ and r

swap A[ℓ] and A[k]

m ← Partition(A, ℓ, r)
A[m] is in the final position

RandomizedQuickSort(A, ℓ, m − 1)

RandomizedQuickSort(A, m + 1, r)

Randomized Quick sort: Summary

❏ Randomized Quick sort is a comparison-based
algorithm based on random partitioning

❏ Expected running time: O(n log n)

❏ Still O(n2
) in the worst case

❏ Very fast in practice

