Divide and Conquer

Lecture 13

by Marina Barsky

https://www.khanacademy.org/computing/computer-science/algorithms/sorting-algorithms/a/sorting

Warmup: Recursive array max

- Design a recursive algorithm called findArrayMax that returns the maximum value in an array
- Formally:

Input: array A of length $n>=1$
Output: max value of A

- Examples: Input: $A=\{4,13,21,5,2\})$ Output: 21

Input: $A=\{-1,-3,-8,-5,-12\}$ Output: -1

Input: $A=\{5\}$ Output: 5

Recursive array max: stop condition

Algorithm findArrayMax(A):
input: a NONEMPTY array, A output: A's maximum element

Stop condition?

A if A.length == 1 return 0

B if A.length == 1 return 1

C if A.length $==1$ return A[0]

- A
- B
- C
- None of the above
- More than one is correct

Recursive array max: recursive step

Algorithm findArrayMax(A):

if A.length == 1:
return A[0]
*

$$
\begin{aligned}
& \text { if } A[0]<A[1]: \\
& A=A-A[0] \\
& \text { return findArrayMax }(A) \\
& \text { else }: \\
& A=A-A[1] \\
& \\
& \text { return findArrayMax }(A)
\end{aligned}
$$

if $A[0]<A[1]:$
$A=A-A[1]$
B return findArrayMax(A)
else:

$$
A=A-A[0]
$$

return findArrayMax(A)

- A
- B
- None of the above

Recursive array max: solution

Algorithm findArrayMax(A):
input: a NONEMPTY array, A output: A's maximum element
if A.length == 1:
return $A[0]$
if $\mathbf{A}[0]<\mathbb{A}[1]:$
$\mathbf{A}=\mathbf{A}-\mathbf{A}[0]$
return findArrayMax(A)
else:
$\mathrm{A}=\mathrm{A}-\mathrm{A}[1]$
return findArrayMax (A)

Sorting Problem

Input: Sequence A of n elements
Output: Permutation A^{\prime} of elements in A such that all elements of A^{\prime} are in non-decreasing order.

Sorting Problem

https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
https://www.toptal.com/developers/sorting-algorithms

Why Sorting?

- Sorting data is an important step of many efficient algorithms
- Sorted data allows for more efficient queries (binary search)

We will use Divide-and-conquer technique

1. Break into non-overlapping subproblems of the same type
2. Solve subproblems
3. Combine results

Divide: break apart

Conquer: solve subproblems

Combine

Idea: merge sort

7	2	5	3	7	13	1	6

split the array into two halves
7253
71316

Idea: merge sort

7	2	5	3	7	13	1	6

split the array into two halves
sort the halves recursively

| 2 | 3 | 5 | 7 | | 1 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 13

Idea: merge sort

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 7 & 2 & 5 & 3 & 7 & 13 & 1 & 6 \\
\hline \\
\text { split the array into two halves } \\
\begin{array}{llllllll|}
\hline 7 & 2 & 5 & 3 & & 7 & 13 & 1
\end{array} & 6 \\
\hline
\end{array} \\
& \begin{array}{l|l|l|l|l|l|l|}
\hline 2 \text { sort the halves recursively } \\
2 & 3 & 5 & 7 & 1 & 6 & 7 \\
\hline
\end{array}
\end{aligned}
$$

merge the sorted halves into one array

$$
\begin{array}{lllllllll}
1 & 2 & 3 & 5 & 6 & 7 & 7 & 13 \\
\hline
\end{array}
$$

Algorithm MergeSort (array A[1...n])

if $n=1$: return A \# already sorted $m \leftarrow\lfloor n / 2\rfloor$
$B \leftarrow \operatorname{MergeSort}(A[1 \ldots m])$
$C \leftarrow \operatorname{MergeSort}(A[m+1 \ldots n])$
$A^{\prime} \leftarrow \operatorname{merge}(B, C)$ return A^{\prime}

Merging Two Sorted Arrays

Algorithm Merge ($B[1 \ldots p], C[1 \ldots q]$)

\#B and C are sorted

$D \leftarrow$ empty array of size $p+q$ while B and C are both non-empty:
$b \leftarrow$ the first element of B
$c \leftarrow$ the first element of C
if $b \leq c$: move b from B to the end of D
else:
move c from C to the end of D
move what remains of B or C to the end of D
return D

Merge sort: example

$$
\left.\begin{array}{|l|l|l|l|l|l|l|}
\hline 7 & 2 & 5 & 3 & 7 & 13 & 6 \\
\hline 7 & 2 & 5 & 3 & & 7 & 13
\end{array} \right\rvert\,
$$

Merge sort: example

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline 7 & 2 & 5 & 3 & 7 & 13 & 1 \\
\hline
\end{array}
$$

Merge sort: example

$$
\begin{aligned}
& \begin{array}{ll|l|lllll}
7 & 2 & 5 & 3 & 7 & 13 & 1 & 6
\end{array} \\
& \begin{array}{l|l|l|l|l|l}
\hline 7 & 2 & 5 & 3 & 7 & 13
\end{array} \mathbf{1} 6 \\
& \begin{array}{|l|l|l|l|l|l|l|}
\hline 7 & 2 & 5 & 3 & 7 & 13 & 1
\end{array} \\
& \begin{array}{l|l|l|l|l|l|l|l}
7 & 2 & 5 & 3 & 7 & 13 & 1 & 6
\end{array}
\end{aligned}
$$

Merge sort: example

\[

\]

Merge sort: example

$$
\begin{aligned}
& \begin{array}{l|l|l|l|l|l|l}
7 & 2 & 5 & 3 & 7 & 13 & 1
\end{array} \\
& \begin{array}{l|l|l|l|l|l|l|l|}
\hline 7 & 2 & 5 & 3
\end{array} \quad \begin{array}{ll}
7 & 13
\end{array} 1 \\
& \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 7 & 2 & 5 & 3 & 7 & 13 & 1 & 6 \\
\hline
\end{array} \\
& \begin{array}{l|l|l|l|l|l|l|l|}
\hline 7 & 2 & 5 & 3 & 7 & 13 & 1 & 6
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 2 & 7 & 3 & 5 & 7 & 13 & 1 & 6 \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 2 & 3 & 5 & 7 & & 1 & 6 & 7 \\
\hline
\end{array}
\end{aligned}
$$

Merge sort: example

$$
\begin{aligned}
& \begin{array}{lllllllll}
7 & 2 & 5 & 3 & 7 & 13 & 1 & 6
\end{array} \\
& \begin{array}{l|l|l|l|l|l|l|l|}
\hline 7 & 2 & 5 & 3
\end{array} \quad \begin{array}{ll}
7 & 13
\end{array} 1 \\
& \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 7 & 2 & 5 & 3 & 7 & 13 & 1 & 6 \\
\hline
\end{array} \\
& \begin{array}{l|l|l|l|l|l|l|l|}
\hline 7 & 2 & 5 & 3 & 7 & 13 & 1 & 6
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 2 & 7 & 3 & 5 & 7 & 13 & 1 & 6 \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 2 & 3 & 5 & 7 & & 1 & 6 & 7 \\
\hline
\end{array} \\
& \begin{array}{l|l|l|l|l|ll}
1 & 2 & 3 & 5 & 6 & 7 & 7 \\
\hline
\end{array}
\end{aligned}
$$

Merge: example

D

\boldsymbol{k}

Merge: example

Compare $\mathbf{B}[\mathbf{i}]$ and $\mathbf{C}[\mathbf{j}]$
D

\boldsymbol{k}

Merge: example

Compare $\mathbf{B}[\mathbf{i}]$ and $\mathbf{C}[\mathbf{j}]$
D

k

Merge: example

Compare $\mathbf{B}[\mathbf{i}]$ and $\mathbf{C}[\mathbf{j}]$
D
\square
\boldsymbol{k}

Merge: example

Compare $\mathbf{B}[\mathbf{i}]$ and $\mathbf{C}[\mathbf{j}]$
D
1235
\boldsymbol{k}

Merge: example

B

Compare $\mathbf{B}[\mathbf{i}]$ and $\mathbf{C}[\mathbf{j}]$

D
12356

Merge: example

Copy what remains in \mathbf{C}
D
\square
123567
k

Merge: example

$$
\begin{aligned}
& \text { в } \\
& \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 2 & 3 & 5 & 7 & & 1 & 6 & 7 \\
\hline
\end{array}
\end{aligned}
$$

D

$$
\begin{array}{|l|l|l|l|lll|}
\hline 1 & 2 & 3 & 5 & 6 & 7 & 7 \\
\hline
\end{array}
$$

Merge sort: running time

Subproblem size at each level

1 -

■

Merge sort: recursion tree

The height of the tree is...

Merge sort: recursion tree

Merge sort: recursion tree

Work at each level: all the work during merge

-

n*

Merge sort: recursion tree

 Work at each level: O(n)

Total: $\mathrm{O}(n)^{*} \log n=\mathrm{O}(n \log n)$

Merge Sort: running time

The running time of $\operatorname{MergeSort}(A[1 \ldots n])$ is $O(n \log n)$.

We can prove that this running time is optimal if we consider sorting based on comparing pairs of numbers

We can not do (asymptotically) faster.
Can we do better in practice?

Idea: Quicksort

\square Divide array A into 2 subarrays
\square Recursively fully sort each subarray conquer
\square Combine the sorted subarrays by a simple concatenation

Quicksort

3. Concatenate.

Select an element called pivot

1. Divide elements into 2 groups L (less or equal), and G (greater than pivot)
2. Conquer: recursively sort L and G
3. Combine: concatenate $L \rightarrow E \rightarrow R$

Example: quick sort

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l}
\hline 6 & 4 & 8 & 2 & 9 & 3 & 9 & 4 & 7 & 6 & 1 \\
\hline
\end{array}
$$

Example: quick sort

\section*{| 6 | 4 | 8 | 2 | 9 | 3 | 9 | 4 | 7 | 6 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Rearrange elements with respect to

$$
x=A[0]
$$

$$
\begin{array}{c|cccccccccc}
1 & 4 & 2 & 3 & 4 & 6 & 6 & 9 & 78 & 8 \\
& \leq 6 & & & & & & >6
\end{array}
$$

Example: quick sort

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 6 & 4 & 8 & 2 & 9 & 3 & 9 & 4 & 7 & 6 \\
\hline
\end{array}
$$

6 is in its final position

$$
\begin{array}{|l|l|lllllllll}
\hline 1 & 4 & 2 & 3 & 4 & 6 & 6 & 9 & 7 & 8 & 9
\end{array}
$$

sort the two parts recursively

$$
\begin{array}{llllllllllll}
\hline 1 & 2 & 3 & 4 & 4 & 6 & 6 & 7 & 8 & 9 & 9
\end{array}
$$

QuickSort(A, ℓ, r)

if $\ell \geq r$:
return
$m \leftarrow \operatorname{Partition}(A, \ell, r) \begin{gathered}\text { position of } \\ \text { element } A \text { l })\end{gathered}$ PivOT \# $A[m]$ is in the final position
QuickSort($A, \ell, m-1$)
QuickSort($A, m+1, r)$

Partitioning: example

\square the pivot is $x=A[\ell]$
\square loop i from $\ell+1$ to r maintaining the following invariant:

$$
A[k] \leq x \text { for all } \ell+1 \leq k \leq j
$$

$$
A[k]>x \text { for all } j+1 \leq k \leq i
$$

Partitioning: example

\square the pivot is $x=A[\ell]$
\square move i from $\ell+1$ to r maintaining the following invariant:
$\square A[k] \leq x$ for all $\ell+1 \leq k \leq j$
$\square A[k]>x$ for all $j+1 \leq k \leq i$
\square if encounter an out-of-order element: swap $A[i]$ with $A[j+1]$

$$
\begin{array}{ll}
j & i
\end{array}
$$

Partitioning: example

\square the pivot is $x=A[\ell]$
\square move i from $\ell+1$ to r maintaining the following invariant:
$\square A[k] \leq x$ for all $\ell+1 \leq k \leq j$
$\square A[k]>x$ for all $j+1 \leq k \leq i$
\square if encounter an out-of-order element: swap $A[i]$ with $A[j+1]$

Partitioning: example

\square the pivot is $x=A[\ell]$
\square move i from $\ell+1$ to r maintaining the following invariant:
$\square A[k] \leq x$ for all $\ell+1 \leq k \leq j$
$\square A[k]>x$ for all $j+1 \leq k \leq i$
\square if encounter an out-of-order element: swap $A[i]$ with $A[j+1]$

Partitioning: example

\square the pivot is $x=A[\ell]$
\square move i from $\ell+1$ to r maintaining the following invariant:
$\square A[k] \leq x$ for all $\ell+1 \leq k \leq j$
$\square A[k]>x$ for all $j+1 \leq k \leq i$
\square if encounter an out-of-order element: swap $A[i]$ with $A[j+1]$

Partitioning: example

\square the pivot is $x=A[\ell]$
\square move i from $\ell+1$ to r maintaining the following invariant:
$\square A[k] \leq x$ for all $\ell+1 \leq k \leq j$
$\square A[k]>x$ for all $j+1 \leq k \leq i$
\square if encounter an out-of-order element: swap $A[i]$ with $A[j+1]$

| 6 | 4 | 2 | 3 | 4 | 6 | 9 | 9 | 7 | 8 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Partitioning: example

\square the pivot is $x=A[\ell]$
\square move i from $\ell+1$ to r maintaining the following invariant:
$\square A[k] \leq x$ for all $\ell+1 \leq k \leq j$
$\square A[k]>x$ for all $j+1 \leq k \leq i$
\square if encounter an out-of-order element: swap $A[i]$ with $A[j+1]$

| 6 | 4 | 2 | 3 | 4 | 6 | 1 | 9 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | j | | | | | i |

Partitioning: example

\square the pivot is $x=A[\ell]$
\square move i from $\ell+1$ to r maintaining the following invariant:

$$
\begin{aligned}
& \square A[k] \leq x \text { for all } \ell+1 \leq k \leq j \\
& A[k]>x \text { for all } j+1 \leq k \leq i
\end{aligned}
$$

\square in the end, move $A[\ell]$ to its final place j

Partitioning: example

\square the pivot is $x=A[\ell]$
\square move ifrom $\ell+1$ to r maintaining the following invariant:

$$
\begin{aligned}
& \square A[k] \leq x \text { for all } \ell+1 \leq k \leq j \\
& A[k]>x \text { for all } j+1 \leq k \leq i
\end{aligned}
$$

\square in the end, move $A[\ell]$ to its final place j

Algorithm Partition (A, ℓ, r)

$x \leftarrow A[\ell]$ \# pivot
$j \leftarrow \ell$
for i from $\ell+1$ to r :

$$
\text { if } A[i] \leq x:
$$

$j \leftarrow j+1$ swap $A[j]$ and $A[i]$
swap $A[\ell]$ and $A[J]$ return j
$\# A[\ell+1 \ldots j] \leq x, A[j+1 \ldots i]>x$

Running time of Quick Sort

If we happen to choose the pivot x in such a way that after the partitioning the array A is split into even halves:

$$
T(n)=2 T(n / 2)+n
$$

This is the same as in Merge sort, only here n comes from partitioning, and in merge sort n comes from combine (merge)

The running time of Quicksort is $\mathrm{O}(n \log n)$

Quick Sort: summary

\square Simple
\square Comparison-based
Very fast in practice

Which choice of pivot would yield an optimal partitioning of A ?

$\begin{array}{llllllllll}A & 7 & 2 & 5 & 3 & 7 & 13 & 1 & 6 & 3\end{array}$

A. 7
B. 6
C. 5
D. 1
E. None of the above

Which choice of pivot would yield the worst partitioning of A ?

$\begin{array}{lllllllllll}A & 7 & 2 & 5 & 3 & 7 & 13 & 1 & 6 & 3\end{array}$

A. 7
B. 6
C. 5
D. 1
E. None of the above

Unlucky choice of pivot

If we choose a pivot in such a way that all values are greater than it, then in each recursive step we decrement a size of the problem only by 1 :

$$
\begin{aligned}
& 14234659789 \\
& \downarrow \\
& \begin{array}{lllllllllll}
1 & 4 & 2 & 3 & 4 & 6 & 5 & 9 & 7 & 8 & 9
\end{array}
\end{aligned}
$$

$$
T(n)=O(n)+T(n-1)
$$

Quick Sort: worst case complexity

 Input size at each level Work at each level $\quad T(n)=n+T(n-1)$

Total: $n^{*} n=O\left(n^{2}\right)$

Quick Sort: worst case complexity

 Input size at each level Work at each level $\quad T(n)=n+T(n-1)$

Total: $n^{*} n=O\left(n^{2}\right)$

Pathological case

$$
T(n)=\mathrm{O}\left(n^{2}\right)
$$

$\begin{array}{llllllllllll}1 & 2 & 4 & 5 & 6 & 6 & 8 & 9 & 9 & 9 & 9\end{array}$

It requires $O\left(n^{2}\right)$ time to process the already sorted array which seems very inefficient since the array is already sorted!

Choosing random pivot

\square We can show that if we choose x randomly there is at least 50% chance that a good pivot will be chosen!

We can prove this using the expectation and the probabilities of random events

\square If we choose all pivots at random, then half the times we do decrease the input sizes by a factor
\square This implies that the height of the recursive tree will be $(2 \log n)$ and the running time becomes $O(n \log n)$

RandomizedQuickSort (A, l, r)

if $\ell \geq r$:
return
$k \leftarrow$ random number between ℓ and r swap $A[\ell]$ and $A[k]$ $m \leftarrow \operatorname{Partition}(A, \ell, r)$
\# $A[m]$ is in the final position
RandomizedQuickSort($A, \ell, m-1$)
RandomizedQuickSort($A, m+1, r$)

Randomized Quick sort: Summary

\square Randomized Quick sort is a comparison-based algorithm based on random partitioning
\square Expected running time: $O(n \log n)$
\square Still $O\left(n^{2}\right)$ in the worst case
\square Very fast in practice

