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Warmup: Recursive array max

• Design a recursive algorithm called findArrayMax that returns the maximum 
value in an array

• Formally: 

Input: array A of length n >= 1

Output: max value of A

• Examples: Input: A = {4, 13, 21, 5, 2})

Output: 21

Input: A ={-1, -3, -8, -5, -12}

Output: -1

Input: A = {5}

Output: 5



Algorithm findArrayMax(A):

input: a NONEMPTY array, A

output: A's maximum element

Recursive array max: stop condition

Stop condition?

if A.length == 1
return 1

if A.length == 1
return 0

if A.length == 1
return A[0]

A

B

C

• A

• B

• C

• None of the above

• More than one is 
correct



Recursive array max: recursive step

if  A[0] < A[1]:
A = A - A[0]
return findArrayMax(A)

else:
A = A - A[1]
return findArrayMax(A) 

A
*

B
*

• A

• B

• None of the above

Algorithm findArrayMax(A):

if A.length == 1:

return A[0]

*

if  A[0] < A[1]:
A = A - A[1]
return findArrayMax(A)

else:
A = A - A[0]
return findArrayMax(A) 



Algorithm findArrayMax(A):

input: a NONEMPTY array, A

output: A's maximum element

if A.length == 1:

return A[0]

if A[0]<A[1]:

A = A - A[0]

return findArrayMax(A)

else:

A = A - A[1]

return findArrayMax(A)

Recursive array max: solution



Sorting Problem

Input: Sequence A of n elements 
Output: Permutation A’ of elements in A

such that all elements of A’ 
are in non-decreasing order.



Sorting Problem

https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

https://www.toptal.com/developers/sorting-algorithms

https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
https://www.toptal.com/developers/sorting-algorithms


Why Sorting?

• Sorting data is an important step of many efficient 

algorithms

• Sorted data allows for more efficient  queries 

(binary search)



1. Break into non-overlapping subproblems 
of the same  type

2. Solve subproblems

3. Combine results

We will use
Divide-and-conquer technique



Divide: break apart



Conquer: solve subproblems

✓

✓

✓ ✓



Combine

✓

✓ ✓

✓



✓



Idea: merge sort

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

split the array into two halves



Idea: merge sort

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

sort the halves recursively

2 3 5 7 1 6 7 13

split the array into two halves



merge the sorted halves into one array

Idea: merge sort

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

2 3 5 7 1 6 7 13

1 2 3 5 6 7 7 13

split the array into two halves

sort the halves recursively



Algorithm MergeSort (array A[1...n])

if n = 1:  return A  # already sorted

m ← ⌊n/2⌋

B ← MergeSort(A[1 ... m])

C ← MergeSort(A[m + 1 ... n])

A′ ← merge(B, C )

return A′



Merging Two Sorted Arrays

Algorithm Merge(B[1... p], C [1... q])

# B  and C  are sorted
D ← empty array of size p + q
while B and C are both non-empty:

b ← the first element of B
c ← the first element of C
if b ≤ c:

move b from B to the end of D
else:

move c from C to the end of D
move what remains of B or C to the end of D
return D



Merge sort: example

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6
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Merge sort: example

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

2 7 3 5 7 13 1 6



Merge sort: example

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

2 7 3 5 7 13 1 6

2 3 5 7 1 6 7 13



Merge sort: example

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

7 2 5 3 7 13 1 6

2 7 3 5 7 13 1 6

2 3 5 7 1 6 7 13

1 2 3 5 6 7 7 13



Merge: example

2 3 5 7 1 6 7 13
i j

B C

D

Compare B[i] and C[j]

k



Merge: example

2 3 5 7 1 6 7 13

1

i j

B C

D

Compare B[i] and C[j]

k



Merge: example

2 3 5 7 1 6 7 13

1 2

i
j

B C

D

Compare B[i] and C[j]

k



Merge: example

2 3 5 7 1 6 7 13

1 2 3

i j

B C

D

Compare B[i] and C[j]

k



Merge: example

2 3 5 7 1 6 7 13

1 2 3 5

i j

B C

D

Compare B[i] and C[j]

k



Merge: example

2 3 5 7 1 6 7 13

1 2 3 5 6

i j

B C

D

Compare B[i] and C[j]

k



Merge: example

2 3 5 7 1 6 7 13

1 2 3 5 6 7

j

B C

D

Copy what remains in C

k



Merge: example

2 3 5 7 1 6 7 13

1 2 3 5 6 7 7 13

B C

D



n

n/2 n/2

n/4 n/4 n/4 n/4

· · ·

1

Merge sort: running time

Subproblem 
size at each 
level

n/8   n/8  n/8   n/8  n/8   n/8  n/8   n/8



n/8   n/8  n/8   n/8  n/8   n/8  n/8   n/8

n

n/2 n/2

n/4 n/4 n/4 n/4

· · ·

1

Merge sort: recursion tree
The height 
of the tree 
is...



n

n/2 n/2

n/4 n/4 n/4 n/4

· · ·

1

Merge sort: recursion tree
The height 
of the tree 
is log n

n/8   n/8  n/8   n/8  n/8   n/8  n/8   n/8



n

n/2 n/2

n/4 n/4 n/4 n/4

· · ·

1

Merge sort: recursion tree
Work at each level: all the work during merge

c*n

2 * cn/2

4*cn/4

8*cn/8

n*c

n/8   n/8  n/8   n/8  n/8   n/8  n/8   n/8



n

n/2 n/2

n/4 n/4 n/4 n/4

· · ·

1

Merge sort: recursion tree
Work at each level: O(n)

O(n)

O(n)

O(n)

O(n)

O(n)

Total: O(n)*log n = O(n log n)

n/8   n/8  n/8   n/8  n/8   n/8  n/8   n/8



We can prove that this running time is optimal
if we consider sorting based on comparing 
pairs of numbers

Merge Sort: running time
The running time of MergeSort(A[1 . . . n]) is 

O(n log n).

We can not do (asymptotically) faster.
Can we do better in practice?



Idea: Quicksort

❏ Divide array A into 2 subarrays

❏ Recursively fully sort each subarray

❏ Combine the sorted subarrays by a simple 
concatenation



Quicksort

Select an element 
called pivot

1. Divide elements into 2 
groups L (less or 
equal), and G (greater 
than pivot)

2. Conquer: recursively 
sort L and G

3. Combine: concatenate 
L→E→R



Example: quick sort

6 4 8 2 9 3 9 4 7 6 1



Example: quick sort

6 4 8 2 9 3 9 4 7 6 1

Rearrange elements with respect to 
x = A[0]

≤ 6 > 6

1 4 2 3 4 6 6 9 7 8 9



Example: quick sort

6 4 8 2 9 3 9 4 7 6 1

6 is in its final position

sort the two parts recursively

1 4 2 3 4 6 6 9 7 8 9

1 2 3 4 4 6 6 7 8 9 9



QuickSort(A, ℓ, r )

if ℓ ≥ r :  

return

m ← Partition(A, ℓ, r )
# A[m] is in the final position  

QuickSort(A, ℓ, m − 1)  

QuickSort(A, m + 1, r )



❏ the pivot is x = A[ℓ]

❏ loop i from ℓ+1 to r maintaining the  
following invariant:
❏ A[k] ≤ x for all ℓ + 1 ≤ k ≤ j
❏ A[k] > x for all j + 1 ≤ k ≤ i

Partitioning: example

6 4 2 3 9 8 9 4 7 6 1

ℓ r

j i



❏ the pivot is x = A[ℓ]

❏ move i from ℓ+1 to r maintaining the  

following invariant:

❏ A[k] ≤ x for all ℓ + 1 ≤ k ≤ j
❏ A[k] > x for all j + 1 ≤ k ≤ i

❏ if encounter an out-of-order element: 
swap A[i] with A[j+1]

Partitioning: example

ℓ r

j

6 4 2 3 9 8 9 4 7 6 1

i
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❏ the pivot is x = A[ℓ]

❏ move i from ℓ+1 to r maintaining the  

following invariant:

❏ A[k] ≤ x for all ℓ + 1 ≤ k ≤ j
❏ A[k] > x for all j + 1 ≤ k ≤ i

❏ if encounter an out-of-order element: 
swap A[i] with A[j+1]

Partitioning: example

ℓ r

j

6 4 2 3 4 6 1 9 7 8 9
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❏ the pivot is x = A[ℓ]

❏ move i from ℓ+1 to r maintaining the  

following invariant:

❏ A[k] ≤ x for all ℓ + 1 ≤ k ≤ j
❏ A[k] > x for all j + 1 ≤ k ≤ i

❏ in the end, move A[ℓ] to its final place j

Partitioning: example

ℓ r

j

6 4 2 3 4 6 1 9 7 8 9

i



❏ the pivot is x = A[ℓ]

❏ move i from ℓ+1 to r maintaining the  

following invariant:

❏ A[k] ≤ x for all ℓ + 1 ≤ k ≤ j
❏ A[k] > x for all j + 1 ≤ k ≤ i

❏ in the end, move A[ℓ] to its final place j

Partitioning: example

ℓ r

j

1 4 2 3 4 6 6 9 7 8 9

i



Algorithm Partition(A, ℓ, r )

x ← A[ℓ] # pivot

j ← ℓ
for i from ℓ + 1 to r :  

if A[i ] ≤ x :

j ← j + 1

swap A[j] and A[i ]

swap A[ℓ] and A[j]

return j

# A[ℓ + 1 . . . j] ≤ x , A[j + 1 . . . i ] > x 



Running time of Quick Sort

T (n) = 2T (n/2) + n

If we happen to choose the pivot x in such a way 
that after the partitioning the array A is split into 
even halves: 

This is the same as in 
Merge sort, only here n 
comes from partitioning, 
and in merge sort n
comes from combine 
(merge)

The running time of Quicksort is O(n log n)



Quick Sort: summary

❏ Simple

❏ Comparison-based 

❏ Very fast in practice



Which choice of pivot would yield 
an optimal partitioning of A? 

A. 7

B. 6

C. 5

D. 1

E. None of the above

7 2 5 3 7 13 1 6 3A



Which choice of pivot would yield 
the worst partitioning of A? 

A. 7

B. 6

C. 5

D. 1

E. None of the above

7 2 5 3 7 13 1 6 3A



Unlucky choice of pivot

If we choose a pivot in such a way that all values 
are greater than it, then in each recursive step we 
decrement a size of the problem only by 1:

1 4 2 3 4 6 5 9 7 8 9

1 4 2 3 4 6 5 9 7 8 9

T(n) = O(n) + T(n-1)



Quick Sort: worst case complexity

..

Work at each level 

n

n − 1

n

n

nn − 2

2 n

n

Total: n*n = O(n2
)

1

Input size at each level T(n) = n + T(n-1)



Quick Sort: worst case complexity
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Input size at each level T(n) = n + T(n-1)



Pathological case

T (n) = O(n2
)

1 2 4 5 6 6 8 9 9 9 9

It requires O(n2) time to process the already sorted array 
which seems very inefficient since the array is already sorted! 



❏ We can show that if we choose x randomly there is at 
least 50% chance that a good pivot will be chosen!

We can prove this using the expectation and the 
probabilities of random events

❏If we choose all pivots at random, then half the times we 
do decrease the input sizes by a factor

❏This implies that the height of the recursive tree will be 
(2 log n) and the running time becomes O(n log n)

Choosing random pivot



RandomizedQuickSort(A, ℓ, r )

if ℓ ≥ r :  

return

k ← random number between ℓ and r

swap A[ℓ] and A[k]

m ← Partition(A, ℓ, r )
# A[m] is in the final position  

RandomizedQuickSort(A, ℓ, m − 1)  

RandomizedQuickSort(A, m + 1, r )



Randomized Quick sort: Summary

❏ Randomized Quick sort is a comparison-based 
algorithm based on random partitioning

❏ Expected running time: O(n log n)

❏ Still O(n2
) in the worst case

❏ Very fast in practice


